

Laboratory for Pediatrics Genome Medicine, Department of Clinical Research, Kagawa National Children's Hospital, Zentsuji, Kagawa, 765-8501, Japan.

Abstract

BACKGROUND: The etiology of type 1 diabetes (T1D) is heterogeneous and is according to presence or absence of pancreatic autoantibodies divided into two subtypes: type 1A (autoimmune-mediated) and type 1B (non-autoimmune-mediated). Although several genes have been linked to type 1A diabetes, the genetic cause of type 1B diabetes in Japanese individuals is far from understood.

OBJECTIVE: The aim of this study was to test for monogenic forms of diabetes in auto antibody-negative Japanese children with T1D.

METHODS: Thirty four (19 males and 15 female) unrelated Japanese children with glutamate decarboxylase (GAD) 65 antibodies and/or IA-2A-negative T1D and diabetes diagnosed at < 5 yr of age were recruited from 17 unrelated hospitals participating in the Japanese Study Group of Insulin Therapy for children and adolescent diabetes (JSGIT). We screened the INS gene and the KCNJ11 gene which encode the ATP-sensitive potassium canal by direct sequencing in 34 Japanese children with T1D.

RESULTS: We identified three novel (C31Y, C96R, and C109F) mutations and one previously reported mutation (R89C) in the INS gene in five children, in addition to one mutation in the KCNJ11 gene (H46R) in one child. These mutations are most likely pathogenic and therefore the cause of diabetes in carriers.

CONCLUSION: Our results suggest that monogenic forms of diabetes, particularly INS gene mutations, can be detected in Japanese patients classified with type 1B. Mutation screening, at least of the INS gene, is recommended for Japanese patients diagnosed as autoantibody negative at <5 yr of age.

Yokota I, Moritani M, Nishisho K, Miyoshi T, Kotani Y, Kagami S.

Institute of Clinical Research, Kagawa National Children's Hospital, Zentsuji, Kagawa, Japan.

Abstract

We examined children who were diagnosed with asymptomatic type 2 diabetes by school medical examinations to investigate the existence of glucokinase (GCK) gene defects in this group. Among 20 children diagnosed with asymptomatic type 2 diabetes by school medical examinations between 2003 and 2009 at our 2 hospitals, 8 were classified as non-obese type. Among them, we screened 5 children (2 boys and 3 girls; age: 8-13 years) who had mild elevation of fasting plasma glucose (108-134 mg/dL) with slightly high internationally standardized HbA1c levels (6.3-6.9%) at first close examination. Written informed consent was obtained and all families agreed to participate in this study. We found 4 different mutations (G223S, G81C, S336X and T228M) in 4 of the examined children. The blood glucose control levels had not become worse in any children during the 2-6 years follow-up period. The inheritance of diabetes with GCK gene defect was later confirmed in 1 family. These results suggest that GCK gene defects exist in non-obese children who are diagnosed with asymptomatic diabetes by school medical examinations. Cases of diabetes that are caused by GCK mutations may not be as rare in Japanese subjects as previously described and could be found in patients tentatively diagnosed as type 2 diabetes.